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1. Introduction and Terminology

Let G be a finite undirected graph without loops or multiple lines. A set of lines
M C E(G) is a matching if no two share a common endpoint. A matching is said to be
perfect if it covers all points of G. One can take the point of view that a matching is a
special case of a more general concept in graph theory-an n-factor. An n-factor of graph
G is a spanning subgraph which is regular of degree n; that is, each point has degree n.
But we can generalize even more. Let f denote a function which assigns to each point v
in V(G) a non-negative integer f(v). Then an f-factor is any subgraph F of G in which
deg FV = f(v). The existence of these increasingly more general concepts for a fixed graph
G are all instances of what have come to be called degree-constrained subgraph problems.

The reader of these Proceedings has already seen in Mulder's article [125] that these
ideas were of great interest to Julius Petersen and in fact he enjoyed some considerable
success in his studies of such problems. Probably the most widely known Petersen results
in these areas are two.

(a) In [132], he proved that any connected cubic graph with no more than two cutlines
has a perfect matching and hence decomposes into the union of a line disjoint perfect
matching and a 2-factor.

It was in this paper that Petersen displayed a cubic graph (actually a multigraph)
with three cutlines and no perfect matching, thus showing that in a sense his "2 cutline"
theorem was best possible. Incidently, the cubic graph so displayed was attributed by
Petersen to his mathematical colleague and friend, Sylvester, and is shown as Figure 4 of
Mulder's paper [125].

(b) In [133], Petersen offered the now famous ten-point cubic graph, which has come
" to be known as the Petersen graph, as an example of a cubic graph which cannot be

expressed as the union of three line-disjoint perfect matchings.
Of course, we do not want to imply that Petersen's reputation in graph theory rests

upon the existence of two particular graphs! These two examples arose out of his ground
breaking studies in the area of graph factorization, said studies having been well delineated
in the paper of Mulder.

It was but a short time after the appearance of Petersen's work ..i print, that the
young Hungarian mathematician Dines K6nig appeared on the scene. It was K6nig who
gave the next strong impetus to the study of graph factorization after Petersen's ground-
breaking work, and it is K~nig with whom we are charged to begin our brief summary of
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the history of matching theory.
It is a formidable task to undertake such a charge! Indeed, hundreds of papers and

a book have been published on the topic of matching theory and there seem to be no
signs that the study of matchings is in any immediate danger of "whithering on the vine"!
Indeed, throughout this paper, we mention quite a number of problems which remain
unsolved Rs we go to press.

Fortunately, matching theory serves well as an historical thread extending from the
time of K6nig (and before) up to the present, wending its way through graph theory
and intersecting many of the most important new ideas which have sprung forth in our
discipline. One sees in particular that after the close of World War I this intertwining
of matching theory with the study of graphs as a whole became ever more inextricable,
even as the study of graph theory as a discipline unto itself literally exploded upon the
mathematical scene.

AlthoLth it is "jumping the gun" somewhat with respect to the organization of this
paper, we can mention three major areas which have joined with graph theory to give
rise to many new and deep results. These are: (1) linear programming and polyhedral
combinatorics; (2) the linking of graphs and probability theory in the area of random
graphs and finally (3) the theory of algorithms and computational complexity. (The three
areas are far from mutually exclusive; but more about that later.)

But having tried to claim that our task is impossible, let us get to it. Please note,
dear reader, that the word "survey" was intentionally avoided in our title and the word
"sampler" used instead. We make no claim in this short paper to be comprehensive or
complete, but instead readily plead guilty to having selected some of our own favorite
branches of matching for more extensive discussion.

Our general plan, then, will be as follows. We present first a Chronology in tabular
form of many of the most important events in the history of matching theory. We will
then deal with much of this in narrative fashion, hopefully supplying enough references as
we go to enable the interested reader to take the various forks in the road offered in order
to study more deeply certain of the topics we mention only superficially. As a much more
comprehensive guide to matching in general and to a large - but by no means exhaustive
- list of references we refer the reader to the book [113]. A less comprehensive - but more
up to date - survey of matching theory is the excellent chapter written by Pulleyblank
for the forthcoming Handbook of Combinatorics [1441.
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A CHRONOLOGY OF EVENTS IN MATCHING THEORY

1912 Frobenius' reducible determinant theorem

1914, 1916 K6nig proves every regular bipartite graph has a perfect matching. K6nig's

Line Coloring Theorem

1915 K6nig's proves Frobenius' theorem in a graph theoretic setting

1927 Menger's Theorem (almost!)

1931, 1933 K6nig's Minimax Theorem

1931 Egerviiry's Weighted Minimax Theorem

1935 P. Hall'E SDR Theorem

19ld K~nig's book appears

1947 Tutte's 1-factor Theorem

1950 Gallai's new proof of Tutte's 1-factor Theorem; new results on regular

factors of regular graphs; extensions to infinite graphs

1952 Tutte's f-factor Theorem

1955 Ore's minimax defect version of Hall's Theorem

1956 Kuhn formulates bipartite matching as a linear programming problem

1956 The Max-flow Min-cut Theorem (Ford and Fulkerson; Dantzig and Fulk-

erson; Elias, Feinstein and Shannon)

1958 Berge's minimax defect version of Tutte's Theorem

1958 Gallai uses LP duality and total unimodularity to derive the Max-flow

Min-cut Theorem, Menger's Theorem, Dilworth's Theorem and Konig-

Egervary Theorem

1958 Berge's book appears (in French)

1960 Ore's book appears

1959-60 Kotzig's three "lost Slovak papers" on the structure of graphs with perfect

matchings

1959-61 Erd6s and Renyi publish first papers on random graphs

1962 Berge's Book appears in English-fi. ..
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1961, 1963 Kasteleyn gives a polynomial algorithm for the number of perfect match-
.mgs in a planar graph

1964-65 Gallai and Edmonds obtain canonical decomposition for any graph in

terms of its naxirnum matchings

1965 Edmonds develops first polynomial matching algorithm for non-ipartite

graphs

196 Erd~s and RInyi discover threshold function for random graph to have a

perfect matching

1965-73 Edmonds and Pulleyblank characterize the facets of the matching poly-

tope

1971 Cook finds first "NP-complete" problem

1972 Karp publishes first list of NP-complete graph problems

1972 Lovisz, building upon the ideas of Kotzig (1959-60), begins an as yet

incomplete extension of the structure of graphs with a perfect matching

1979 Khachian develops first polynomial algorithm for LP - the Ellipsoid Al-

gorithm

1979 Pippenger introduces the parallel complexity class "NC"

1979 Valiant proves that computing the number of perfect matchings is #

P-complete (and also shows that this computation is thus NP-hard)

1982 Naddef and Edmonds, Lovisz and Pulleyblank obtain two structural

characterizations of the dimension of the perfect matching polytope

1984 Bollobis book on random graphs appears

1985 Razborov obtains his superpolynomial monotone complexity bound for

the perfect matching decision problem

1986 Lovsz-Plummer book on matching theory appears

1986 Karp, Upfal and Wigderson give RNC (parallel) algorithm for finding a

perfect matching

1986-88 Broder, Jerrum and Sinclair relate approximate counting of perfect match-

ings to random generation of a perfect matching thereby introducing new

probabilistic techniques
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2. Our Narrative Begins

In 1912, Frobenius [54] published a paper in which he dealt with determinants of
square matrices in which the non-zero entries were all distinct variables. The question
was: when could such a determinant (i.e., a polynomial) be factored? Frobenius showed
that this was possible if and only if one could permute the rows and columns of the matrix
so as to display a rectangular block of zero entries. Some three years later, K6nig [90] gave
a somewhat shorter proof, but more importantly from our perspective, showed that this
problem could be modeled in terms of the pefect matchings of a certain bipartite graph.

In the following year, K6nig published twin papers - one in Hungarian [92], the
other in German (911 - in which he proved the. every regular bipartite graph has a
perfect matching. (Actually, this result had been announced some two years earlier in a
1914 communication to the Congr~s de Philoophie Math~matique in Paris. However, this
communication was not published until some nine years later! See [89].) Others treated
this theorem in differing contexts, but to go into this would certainly interrupt the flow
of our narrative, so we refer the interested reader to the chapter notes of K6nig's book in
either its original German version [951 or the new English translation [96], a translation
for which the graph theory community has had to wait far too long!

In 1927, Menger published the first proof of his now celebrated minimax theorem on
connectivity in graphs [120]. The version published in this paper was the "undirected point
version" known to any beginning student of graph theory. Informally, the result says that
in any undirected graph with two distinguished nonadjacent points s and t, the maximum
number of point-disjoint paths joining a and t is equal to the minimum size of any set of
points in G - 8 - t the deletion of which separates points a and t. (There are now four
principal versions of Menger' Theorem which one may obtain by taking all combinations
of the concepts "undirected graph", "directed graph", "point-disjoint paths" and "line-
disjoint paths". All are really equivalent and derivations of each from others can be found
throughout the literature. See, for example, the textbook by Bondy and Murty [191.)

Unfortunately, there was a hole in Menger's 1927 proof which was to prove of deep
significance for all of subsequent graph theory! First, let us hasten to point out that Menger
himself 1121] repaired the gap and published a complete proof. But in the meantime, K6nig
had discovered the flaw in the 1927 proof; Menger had neglected the case when the graph
involved was bipartite.

This realization by K6nig led to the proof of what is surely one of the most influen-
tial theorems in all of graph theory - his minimax theorem. (See 193] and 194] for the
Hungarian and German language treatments of this landmark result respectively.) The
statement of the minimax theorem is easy to grasp. Let G be a bipartite graph. Then
the minimum size of any set of points which collectively cover (i.e., touch) each line of G
equals the maximum size of any matching in G. Also in 1931, Egerviry [37] published a
more general version of the minimax version in which the lines were assigned non-negative
weights.

Now one could rhapsodize about minimax theorems and their importance in graph
theory at great length! Their importance can hardly be overestimated, especially today,
since such ideas and results as the Max-flow Min-cut Theorem, the duality theorem of
linear programming, so-called "good characterizations", etc. etc., have emerged.
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But why are minimax results so important? Because they often tell us when a candi-
date for a 8olution we have in hand, in fact truly is a 8olution! Consider the simple case of
bipartite matching and K6nig's Minimax Theorem. Suppose we have a matching in hand
and wish to know if it is indeed a maximum matching.

If, somehow, we can find a point cover for G the cardinality of which is also k, then
by K6nig we know that our matching is indeed maximum. We must be honest here and
point out that how one obtained such a point cover has been ignored! Indeed, we have
already met the crux of the idea of a good characterization, a concept generally attributed
to Edmonds in the 1960's.

Let us stick to the setting of our paradigm problem - bipartite matching. We say
that the matching number k of a bipartite graph is wdl-characterizcd for the following
reason. If we want to convince someone that the matching number is > k, we need only
exhibit a matching of cardinality > k. On the other hand, if we wish to show that the
matching number is < k, we need only exhibit a point cover of size < k. In the modern
terminology of complexity theory, we say that a graph property is in NP if, given any
graph for which the property holds, there is a "short" proof - or certificate - that it
holds. (For the definition of NP, it has been agreed upon that "short" means a number of
steps polynomial in the size of the input graph.)

We have already been a bit cavalier about just how the problem of bipartite matching
is to be posed. Is the problem to obtain a number or is it to be some kind of "yes or
no" question? The class NP is normally defined as a class of "yes or no", i.e., decision
problems. But it is easy to convert the problem of determining the size of a maximum
matching into such a decision problem. Let k be any integer such that 1 < k < IV (G) 1/2.
Then for each such k, ask the question: "is the size of a maximum matching in graph
G at least k?" We then need at most k certificates to determine the size of any largest
matching in G. But if the task of verifying one certificate can be done in time polynomial
in the size of the input graph, then, trivially, so can the compound task of verifying k such
certificates, for k is, by definition, polynomially bounded in the size of the input graph and
the sum of a polynomial number of polynomials is a polynomial!

It is important to emphasize that for the purposes of defining NP, it is of no conse-
quence how we "happened upon" the fact that the property holds, in other words, how we
obtained our certificate.

In contrast to the class NP, however, if given any graph for which a property does not
hold, there is a certificate showing that it does not hold, we say that the property is in
the class co-NP. It is immediate by K6nig's Minimax Theorem that bipartite matching
is in NPn co-NP. (For the cognoscenti of complexity theory, of course one can say more;
namely that bipartite matching is in class P. That is to say, we have an algorithm, which
not only certifies that a given matching is maximum, but actually obtains the certificate
- in fact, the maximum matching itself! - in polynomial time.)

Surely, class P must a proper subset of class NP! But is it? Most readers will know
that this is the outstanding open question in the area of complexity theory today. More
particularly, it is clear by definition that we have P C NPn co - NP C NP. It is unknown
whether "C" can be replaced by "=" at either location.

We shall return to other complexity results and questions later in this paper.
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For much more comprehensive treatments of minimax theorems in graph theory and
combinatorics, we refer the reader to the surveys of Woodal] [170], Schrijver [152] and
[143]. As for us, we shall return to several matching-specific minimax theorems below.

But ..... we have strayed from our timeline.
In 1935, Philip Hall [72] published his famous theorem on systems of distinct repre-

sentatives. Although cast in the language of set theory, it was soon realized by K~nig [95]
that Hall's theorem could be simply stated in terms of bipartite graphs as follows. Let
G = (A, B) be a bipartite graph with point bipartition AU B with JAl = IBI and if X C A,
let r(X) denote the set of points in B each of which is adjacent to at least one point of X.
In other words, let I(X) denote the set of neighbors of set X. Hall proved that bipartite
graph G has a perfect matching if and only if Ir(X)l I_ IXI for every X C A. In this form,
Philip Hall's Theorem was to prove one of the most famous in all of matching theory and
is perhaps to be found in more lists of references of matching theory papers than any other
one paper. It is interesting to note that Hall was quite aware of the contents of Kanig's
1916 papers and in fact in his paper, Hall's begins by referring to the German version
thereof.

The following year, K6nig published the first book on graph theory [95]. For the first
time, graph theory was set down as an organized body of mathematical results derived
from a set of axioms in a precise manner. The book was written in German. For all
intents and purposes, up to that time the discipline of graph theory had been ignored by
the Englizh-speaking mathematical communities in Great Britain and the United States.

But that, along with most other matters in the affairs of man, was about to change
swiftly and dramatically.

During the dark days of World War II, little, if any, graph theory was done, as was
more or less the case with mathematics in general. However, significant exceptions to that
statement are to be found in such areas - for the most part kept highly secret - as
cryptography, ballistic trajectories, computer development, nuclear physics and navigation
and communications. But the seminal ideas of a new and tremendously important branch
of mathematics were also to arise in reaction to very "applied" wartime issues such as
deployment and logistical supply. Soon to be born was the discipline of linear programming.
(See Section 3 below.)

The first significant graph theory theorem of the post-war era was indeed to become
one of the most significant in the entire history of the subject. In 1947, W.T. Tutte [158]
published his celebrated 1-factor Theorem. (This, incidently, before he had finished his
Ph.D .!) This -resualt set fohh imxt~ fist e X~ci '~'~m &.. .M*.

bipartite) graphs with perfect matchings.
Let G denote any graph, bipartite or non-bipartite, and let S be any set of points in

G. Finally, let co(G - S) denote the number of odd components of G - S. Then Tutte's
result states that graph G has a perfect matching if and only if c0 (G - S) < ISI for every
set S C V(G). We would point out that similarities in form are apparent between Hall's
theorem for bipartite graphs and Tutte's theorem for general graphs. Another interesting
parallel lies in the proofs. In Hall's formulation, let us call a set S C A a barrier if
ISj > F(S)i. Similarly, in Tutte's formulation, let a barrier be any set S for which
ISI < co(G - S). Then in each of the two theorems, half of the proof is trivial. Namely, if
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there exists a barrier, then a perfect matching cannot exist. The non-trivial part of each
theorem lies in proving the converse.

One more remark is in order here before pressing on. Tutte's original proof of his 1-
factor Theorem involved computations with the so-called Pafflan of a matrix. It was not
long before other proofs were found which involved only truly graph-theoretic techniques.
However, the notion of a Pfaffian matrix associated with a graph was to reappear much
later in the work of Kasteleyn and is still being investigated at the time of this writing.
(See for example, Vazirani [88; 89].)

In 1950, one of the truly "unsung heros" of graph theory, T. Gallai, published a paper
[60] in which, among other things, he gave a proof of Tutte's theorem using the method
of alternating paths. The idea of using alternating paths, to be sure, did not originate
with Gallai. In fact, Gallai himself in his two fascinating biographies of K6nig [63; 96]
points out that such methods were used by K6nig as early as 1915 [90] and indeed, Mulder
[125] has pointed out that the idea was even used by Petersen [132]! The concept of an
alternating path is simple indeed. Suppose one has a fixed matching M in a graph G.
Let us agree to call the lines of this matching red if they belong to the matching and blue
otherwise. Then a path P in G is said to be alternating with respect to M (or simply
M-alternating) if the lines of P alternate in color. An M-alternating path P is said to
be M-augmenting if it is M-alternating and begins and ends with blue lines. Clearly, if
one can find an M-augmenting path in the graph G which joins two lines not covered by
M, then one can find a matching larger than 14 simply by exchanging on the lines of P.

It was proved by Berge [5; 9], but probably known to Petersen (see Mulder [125]),
that a matching M is of maximum cardinality, or simply maximum, if and only if there
exists no augmenting path with respect to M. This fundamental idea has proved to be the
basis for the best known and most efficient combinatorial algorithms for finding maximum
matchings known today. But more about that below.

In addition to his new proof of Tutte's Theorem, Gallai also extended the theory of
regular factors of regular graphs first started by Petersen. (See Section 1 of the present
paper.) Indeed, gradual improvements on the general question of the existence of regular
factors in regular graphs had been made by Bibler [3], Rado [147], Belck [4] and others.
Although this is an interesting and important branch of graph factorization, we have
chosen not to treat it in detail. Instead, fortunately, we can refer the interested reader to
the paper of Bollobis, Saito and Wormald [17] for a concise summary of the status of the
problem, leading up to their own result which is, to the best of the author's knowledge,
the latest word on this subject in the following sense. Given integers r > 3, and 1 < A < r,
the authors determine precisely for which values of k, every r-regular graph G with line-
connectivity A has a k-factor.

The reader, we hope, will forgive a personal remark at this point. We referred to Gallai
as an "unsung hero" above. Indeed, his name is seldom found, for example, in introductory
textbooks on graph theory. His publication list, although containing some graph theoretic
results of the highest caliber, is not long. But to those fortunate enough to have come
to know him, either as students or colleagues (or both), have the greatest respect for this
modest, unassuming and selfless man. (See Lovisz's remarks in his tribute to Gallai on the
occasion of his seventieth birthday [110].) The present author fondly recalls some twenty
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years ago or so when he wrote a letter to Gallai asking a question about independent
sets. In response, we received a long and carefully written reply containing theorems,
constructions, etc. etc. which to the best of my knowledge, still have not seen the light
of day! Nor was this the only occasion upon which we benefited from Gallai's kindness.
In conversations with other graph theorists, we have heard similar stories. One can only
conjecture what graphical gems lay hidden on Gallai's desk which he has not seen fit to
publish. Yet, in a life filled with more than one's fair share of personal tragedy, Gallai
seems to have remained unfailingly kind, unselfish and considerate to his colleagues and
students.

At this point, the reader's attention is directed back to the Introduction to this paper
where the concept of an f-factor was defined. Of course, a perfect matching is just a
special case of an f-factor when the function f has the value 1 on each point of the graph.
In 1952, Tutte [159] published his f-factor Theorem in which he gave a characterization
of those graphs which have an f-factor. Unfortunately, the characterization is somewhat
complicated and not easy to apply. Tutte also formulated a beautifully symmetric version
of his f-factor theorem by defining what he called an f-barrier and then showing that an
arbitrary graph had an f-factor if and only if it had no f-barrier. This approach is much
in the spirit of the classical theorems of P. Hall and Tutte's own on the existence of a
1-factor.

Soon after in 1954, Tutte showed that in fact his f-factor Theorem could be derived
from his earlier 1-factor Theorem [160]. Although this served the double purpose of unify-
ing his 1-factor Theorem and his f-factor Theorem and provided a much more accessible
proof of the latter, it still did not help one to use the f-factor result. Indeed, Tutte himself
was quite aware of this difficulty and some twenty years later published a paper in which
he attempted to simplay matters by the introduction or mraxmai barriers [161]. Even so,
it seems fair to say that despite these attempts, the f-factor theorem remains one of the
most challenging results for graph theorists to assimilate and to use in their own work.

The interested reader will find the most comprehensive treatments of the f-factor
Theorem in the three books [162], [10] and [113].

But the story about f-factors did not end here. All of the above-mentioned treatments
of the problem deal with the existence of an f-factor. It is another matter indeed to actually
find one! Of course this leads us immediately to the area of algorithms. However, since
the f-factor Theorem will not be a central issue in this Sampler, we omit an algorithmic
discussion from Section 6. Suffice it to say that there exist algorithms for finding f-
factors which are polynomial only in the number of points and lines of the graph and are
independent of the function f. (See Gabow [57] and Anstee [2].)

Having said only that, we revert to our Chronology.

In 1955, Ore [127] published his minimax version of Hall's Theorem and thereby
focused attention on a more general problem: in a graph with no perfect matching, what
is the size of a largest matching? We call such a matching a maximum matching.

It is a good idea at this point to clear up a point which is not perhaps so minor as
one might think. All mathematicians are aware of the difference between the concepts of a
maximal structure (i.e., inclusion-wise maximal) and a maximum structure (i.e., a struc-
ture having largest cardinality). A maximum matching, for example, is certainly maximal,
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but the converse implication seldom holds. Indeed, in mathematics in general, the two
concepts are seldom equivalent and yet the two words are carelessly interchanged again
and again in the literature by mathematicians who should know better. Just how different
the two concepts are vis-k-vis matchings will be made more apparent when we discuss al-
gorithmic questions in Section 6. (Incidently, although it is not at all clear in which graphs
all maximal matchings are indeed maximum (in other words, those graphs in which all
maximal matchings have the same cardinality), such graphs have been characterized in
such a way that they can be polynomially recognized. (See [105].)

But having gotten that off our chest, let us return to Ore's result. Let us henceforth
denote the size of a maximum matching in graph G by v(G). Now let G = (A, B) denote
an arbitrary bipartite graph. Define now the parameter L'(G) as the minimum taken over
all subsets X C A of the quantity JAI + ]F(X)I - IXI. Then Ore's minimax theorem -
also called Ore's Deficiency Theorem - says that v(G) = v'(G).

Two years later, Berge [6] generalized this result to all graphs. Let us modify Ore's
parameter L'(G) as follows. Let G be any graph; that is, no longer necessarily bipartite.
As in the statement of Tutte's 1-factor Theorem above, for any subset S C V(G), let
co(G - S) denote the number of odd components of G - S. Now let z,"(G) be one half
the minimum over all subsets S C V(G) of the quantity JV(G)J - co(G - S) + ]S[. Then
Berge's minimax theorem for matchings - also called Berge 's Deficiency Theorem - says
that v(G) = L"(G).

It is of interest to note here that the Theorem of P. Hall, Tutte's 1-factor Theorem
and their respective deficiency versions discussed above belong to a category of theorems
called "self-refining results". The idea is this. Although the deficiency versions sound more
general than the two 1-factor theorems to which they correspond (and to be sure the I-
factor versions are indeed immediate corollaries of the deficiency versions), it is somewhat
surprising to discover that in fact the deficiency versions are really equivalent to the 1-factor
results

This business of equivalent theorems which we have already mentioned in our dis-
cussion of Menger' Theorems in their various forms, and which we meet here again in
these two deficiency results, extends even further in the area of our narrative. Although
i4 is not centrai to our chronology, it can be shown that most of the main theorems we
state are all equivalent! That includes such results as K6nig's minimax theorem, Menger's
Theorem, Hall's Theorem, Tutte's 1-factor Theorem, Tutte's f-factor theorem, the defi-
ciency theorems of Ore and Berge, Dilworth's Theorem on partially ordered sets [311, and
the Max-flow Min-cut Theorem which we are about to meet. Those we relish "circles of
proofs" are referred to [113], to the thesis of Magagnosc [119], to Hoffman [731 and to a
monograph devoted entirely to this subject [150].

At this point we will diverge from our heretofore "linear" treatment of the Chronology
of matching theory to treat in somewhat more detail four "branches" of the subject.
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a. The Max-flow Min-cut Theorem and Linear Programming

In the immediate post-World War LI years, George Dantzig, who had, by his own
admission, "become an expert on programming planning methods using desk calculators"
[29; pg 78], was still in the employ of the U.S. Air Force. In 1947, based upon a family of
logistical supply programs with which he had worked, Dantzig formulated the archetype of
what we call today a linear programming problem. The idea was - and is - to optimize
(i.e., to either maximize or minimize) a linear objective function subject to a set of of linear
conastrainta (linear equations and inequalities). Moreover, Dantzig developed a method for
efficiently solving such problems; a method which remains the favorite in practice today
- the Simplez Method. Later in the same year, Dantzig met John von Neumann for
the first time in order to consult with him on his new idea. It seems that, although no
evidence existed in print, the seminal ideas of linear programming had also occurred to von
Neumann, apparently during his work with Morgenstern on the theory of games. According
to Dantzig, it was at this time that he (Dantzig) first learned about the now-fundamental
concept of duality from von Neumann. The history seems muddy here, but Dantzig claims
that as far as he is concerned, the famous Duality Theorem was known to von Neumann,
although it was Gale, Kuhn and Tucker [58] who published the first rigorous proof.

The idea of the Duality Theorem is that for every linear program which, let us say,
seeks the maximum of a certain linear objective function subject to a collection of linear
constraints, there is a second linear program - the dual - definable in terms of the
parameters of the first program - called the primal - such that the dual program is
a minimization problem and that as long as both the primal and dual programs have
solutions, they are in fact equal. Or stated more formally,

Theorem 2.1. (The Duality Theorem of Linear Programming) Let A be any matrix
and b and c be vectors. Then

max {czlAx < b} = min {ybly > 0; yA = c}

(provided at least one of these sets is non-empty.)

In this succinct representation, cx represents the (primal) objective function and yb
the dual objective function. The linear constraints of the primal are represented as the
matrix inequality Ax < -6, while those of the dual are stored in the expressions y > 0 and
yA=c.

So here again we have a minimax theorem.
From the barely countable number of references on linear programming (or "LP" for

short) which exist in book and paper form, in addition to the historical article by Dantzig
J29] already referred to, we suggest the books by Chvital 123] and Schrijver [154]. For our
part, we shall attempt to ruthlessly stick only to those aspects of LP which directly affect
matching theory. (See also [113; Chapt. 7].)

But before continuing any discussion of linear programming and its applications to
matching, let us introduce one more minimax theorem which will turn out to be important
for our purposes. This theorem sounds strikingly like the Menger Theorem(s) discussed
above and first proved in the 1927-32 era. But, similar though it is, our next theorem
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remained undiscovered for another twenty years until proved first by Ford and Fulkerson
in 1956 147] not long after the birth of LP described above. It is commonly called the
Max-flow Min-cut Theorem.

First we need a bit of terminology. Let D be a digraph with two distinguished points
8 and t called the source and sink respectively. As usual, we will denote the line directed
from point u to point v by (u, v). In addition, let each line (u, v) be assigned a non-negative
real number c(u, v) called its capacity. The resulting line-weighted digraph is often called a
trarportation network, or simply, a network. Let V(D) = S U S denote a partition of the
point set V (D) such that the source a lies in S and the sink t in S. Then the ordered pair
(S, S) (or sometimes the set of lines directed from set S to set S) is called an 8 - t-cut in
D. The sum Z-(u,,,),uES, -E C(u, v) is called the capacity of the cut (S, S) and is denoted

by c(S, S).
Next, let .6 denote another function from the lines of D to the real numbers satisfying

the following two conditions:

(i) for each line (u, v), 0(u, v) !S c(u, v), and

(ii) for each point u E V(D), u {s,t}, F(w,u)EE(D)O4(WU) = Z(u,v)EE(D) 4(U,v).

Such a function 4, is called a flow in digraph D. We call the quantity E(,u)EV(D) C,(s, u)
the value of the flow 4, and denote it by 101.

We are now prepared to state the next result.

Theorem 2.2. (The Max-flow Min-cut Theorem) Let D be a network with source s
and sink t. Then: max 141 = min c(S, s), where the maximum is taken over all s - t flows
6 and the minimum is taken over all s - t cuts (S, Y).

This extremely useful theorem sounds like a direct generalization of Menger's Theorem
(directed line version) and in fact it is! But it is also yet another example of a self-refining
result in that it can be derived from Menger's result and hence by the above discussion
can be added to the circle of proofs already containing K6nig's Theorem, Hall's Theorem,
Tutte's Theorem, etc. The first proof of the Max-flow Min-cut Theorem is due to to Ford
and Fulkerson [47], followed hot on the heels by independent proofs by Elias, Feinstein and
Shannon [40], a second due to Ford and Fulkerson [48] (this one containing the now-familiar
labeling algorithm for constructing a maximum flow) and yet another due to Dantzig and
Fulkerson [30] using the duality theorem of LP. Thus flow theory and linear programming
were essentially "joined from birth"! (Hoffman [74] claims that Kotzig had independently
proved the theorem during World War II as well. Indeed, at least a line-version of Menger's
Theorem appears in the Slovakian reference [97] which, because of its inaccessibility due
to language among other things, has remained largely ignored. This unfortunate linguistic
problem was to also rob Kotzig of credit well-deser 'ed in the theory of graphs with perfect
matchings, but more about that in Section 4 below.) One finds a nice historical treatment
of the early days of the Max-flow Min-cut Theorem in the book by Ford and Fulkerson
[49] including a derivation of the K6nig Minimax Theorem from Max-flow Min-cut.

Kuhn [102; 103] at nearly the same time as the above, published an algorithm for the
Assignment Problem (line-weighted bipartite matching) which makes use of the primal-
dual approach of LP. Kuhn seems to have been the first to refer to this procedure as the
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Hungarian Method and pays fulsome tribute to K6nig and Egerv.ry for having developed
the essence of the method in their classic papers of some twenty-five years before. Hence-
forth, matchings, flows and linear programming were to be inextricably bound together.

We now describe what might be called - for want of a better term - the polyhedral
approach to matching.

Let us agree that our task is to find a maximum matching, using LP. In order to do
this, consider each matching M in a given graph G as a binary vector of length IE(G)I = m,
indexed by the lines of G, in which one finds a 1 in the ith slot if and only if the ith line is
found in matching M. Such a binary vector will be called a matching vector. One can
then define the matching polytope of a graph G, denoted by M(G), as the convex hull
of all these matching vectors.

But the usual approach to solving a linear programming problem - as we have already
seen in the brief description of the duality theorem above - is to is to optimize (in this
case maximize) a linear function subject to a set of linear constraints. Let us set about
formulating the problem this way. We shall begin by stating an certain abstract linear
program:

maximize I lx (3.1)

subject to x > 0 (3.2)

Ax < L, (3.3)

where A is a matrix of (non-negative) real numbers.
Now let us begin to specialize. Let A = (a..) denote the point-line incidence

matrix of graph G; that is,

ave 1, if v is an endpoint of line e,
0, otherwise.

So now A has become an integer - in fact, (0,1) - matrix.
The solutions of the above linear program will be called fractional matchings; the

reason why will become clear in just a moment.
Now let us suppose that among the vectors x yielding an optimum solution to the

above LP, one has as its components only 0's and l's. Then the constraints (3.2) and (3.3)
guarantee that vector x is a matching and hence 1 • x is just the number of lines in this
matching. Thus our maximized objective function is just the cardinality of a maximum
matching!

Moreover, in the special case when graph G is bipartite, it can be proved that such a
0 - 1 solution vector x always exists.

But let us return to the inequalities (3.2) and (3.3) for a moment. It may be shown
that the solutions to these inequalities form a polytope (or bounded polyhedron), called
the fractional matching polytope. (In fact, a system of inequalities - or half spaces -
like those above is one of two equivalent methods of defining a polyhedron; the other, via
a classical result of Minkowski [124] and Weyl [169] is as the convex hull of a finite number
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of vectors.) It is a well-known fact from LP that at least one optimum value of x will occur
at a vertex of this polytope. But when G is bipartite, all such vertices are integral! This
follows from the fact that when G is bipartite, every square submatrix of the constraint
matrix A has determinant 0 or ±1 [113]. A matrix possessing this property for each of
its square determinants is called totally unimodular. The result we seek then follows
from a more general result due to Hoffman and Kruskal [751] which in our setting says that
if the constraint matrix is totally unimodular, then the corresponding polyhedron has all
integral vertices.

But let us now drop the assumption that our graph is bipartite and return to the LP
having constraints (3.2) and (3.3). By linear programming duality, we have a minimax
result which in turn offers a "good chracterization", but a good characterization of what?
The answer is: a good characterization of the cardinality of a maximum fraetiond match-
ing. But, sadly, we can no longer necessarily conclude that among the vector x which
maximize the objective function, i.e, that correspond to maximum (fractional) matchings,
there is any at all which is integral! So what are we to do?

Let us once again return to our paradigm LP above with constraints (3.2) and (3.3).
To be sure, there are only a polynomial number of constraints given - namely IVGI + 1.
Let us simply replace the constraint (3.2) with the stronger demand that:

x is a 0 -1 vector. (3.2)'

The resulting new LP has exactly the same number of constraints, but duality theory
no longer applies, so our minimax result is gone. Where can we turn?

Fortunately, there is an alternative approach. It can be shown that the integrality
constraint is dropped, an integral minimax result is still obtainable, by adding more linear
constraints!

But what kind of constraints can we add to accomplish this and how many of them
will do the job? To this end, let us define the matching polytope of graph G, denoted
M(G), as the convex hull of all matchings in G. We know that such a polytope has an
alternative definition in terms of a system of linear inequalities. We now seek to find such
a system. Of course, it is natural to want to add as few additional constraints as possible
in order to accomplish this task as well.

Such an alternative description of the matching polytope in terms of constraints (3.2)
and (3.3) and a set of additional constraints has been accomplished by Edmonds [34].

From this point on, details become quite a bit more difficult to deal with and we
refer the reader to [113] or [142; 143] as just three possible sources. First, let us define
the co-boundary of a point v of graph G, denoted 6(v), as the set of lines incident with
point v (or more carefully, in our LP language, the characteristic IE(G)I-vector of such a
line set). Then we will replace each of the [V(G constraint inequalities in (3.3) with the
inequality:

x .6(v) _ 1, for each point v E V(G). (3.3)1

Now let us define an entirely new set of inequalities called the blossom inequalities:
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